Using GPUs for High Performance
Computing Applications

Mark Govett
Craig Tierney
Jacques Middlecoff

NOAA HPCC Final Report
June 2010

Outline

* GPU Basics

e NOAA Research Efforts

— F2C-ACC Compiler Development
— NIM Parallelization and Performance

NOAA HPCC Final Report
June 2010

NVIDIA GPUs

lllustration of two

Fermi GPUs GPU #1 CPU- 2008
attached to a v 933Gflops
dual-socket i} 150W

Nahalem CPU GPU #2

300 +

<> 8x increase in aso |) =0 GPU
g2 double precision = : a8
18 < 2xincrease in 7
memory bandwidth g 1ot
' <> Error correcting g ..l CPU:2008
| memory & ~45 Gflops
“T cey 160W

L] L] T L] A} L] Ll
1998 1999 2000 2001 2002 2003 2004 2005 2006

NOAA HPCC Final Report 3 &ESRL
June 2010

GPU Memory Model

100x is possible on highly scalable
codes

Efficient use of memory is critical
to good performance

— 1-2 cycles to access shared memory

— Hundreds of cycles to access global
memory

CPU Host

GPU Device

Block (0, 0)

*

*

Block (1, 0)

*

*

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

y 3

S

S

NOAA HPCC Final Report
June 2010

GPU Programming Model

* Kernels - program Segments CPU Host GPU Device
* Thread Blocks - blockld

Grid 1
[] —
Threads — threadID _— |
!)0,0()0,1()0,2(
Block - Block ' Block
1,007)1, Y)12

’ 7
’ 7
. 7
/. Grid 2/
’ ’
U

v

Kernel
2

Block (1,1) .

NOAA HPCC Final Report
June 2010

Execution Flow-control
(select routines)

o o o
=

— Copy between CPU and GPU is non- ||

rl r2 r3 r4

trivial routine
* Benefits can be overshadowed by the copy

awi}-unJ

* WRF model demonstrated 7x improvement
(including copies)

v w NOAA HPCC Final Report

June 2010

Execution Flow-control
(run mostly on the GPU)

> > CPU

‘>{ , GPU

— Eliminates copy every model time
step

— CPU-GPU copy only needed for
input and output

NOAA HPCC Final Report
June 2010

ESRL Research Efforts

* Next Generation Weather Models are driving
computing requirements

— NIM Model development (MacDonald, Lee)

* Purchased 16 node NVIDIA Tesla system in 2008
(~31Tflops)

* Developed Fortran to CUDA compiler
* Parallelized NIM model dynamics

v @ NOAA HPCC Final Report

June 2010

Non-hydrostatic Icosahedral
Model (NIM)

— Global Weather Forecast Model
— Under development at NOAA‘Earth System
Research Laboratory
* Dynamics complete, physics integration in progress
— Non-hydrostatic
— Uniform, hexagonal-based, icosahedral grid

— Plan to run tests at 3.5km'global in late 2010
* Cloud resolving scale

* Model validation using AquaPlanet
— Idealized test for both dynamics and physics

v@ NOAA HPCC Final Report

June 2010

Next Generation Weather Models

 Models being designed for global cloud resolving scales (3-4km)

e Large CPU systems (~200 thousand cores) are unrealistic for
operational weather forecasting

* Require forecasts to be generated at 2 percent of real-time

e Poor application scaling

* Power, cooling, reliability, cost

GPU System DOE Jaguar System
- 1.0 PetaFlop - 2.3 PetaFlops e
_ 1000 NVIDIA GPUSs - 250,000 CPUs = e
- 10 cabinets - 284 cabinets
- 0.5 MW power - 7-10 MW power
-~ S5 million - ~S50-100 million
- MTBF in weeks - MTBF in hours
@ NOAA HPCC Final Report

Fortran-to-CUDA Translator

e Motivation

— In 2008 it was unclear if/when NVIDIA would support
Fortran or what the capabilities will be

— Hand translation is too slow
— Maintain a single source code

* Converts Fortran 90 into C or CUDA-C
— Some hand tuning is necessary

e Future plans dependent on vendor solutions

v @ NOAA HPCC Final Report

June 2010

Parallelization & Portability

e Directive-based GPU Parallelization

* Single Source Code
— Serial Code (CPU)
— Parallel Code (CPU)
— GPU, Multi-core, etc

Models

Accelerator
Systems

NVIDIA
GPU

AMD
GPU

Intel
Multi-core

NOAA HPCC Final Report
June 2010

Status of FYO9 Work

Single GPU
. communications
* Dynamics ‘ GPUH1
— Horizontal data dependencies Input Output

e GPU threads over 96 vertical levels
CPU#1

— Communications only needed for 1/0
— Limited by 1GB GPU memory

* Increased number of blocks hides memory latency

— Runs 34 times faster on a GPU than CPU

* Physics
— WRF microphysics being incorporated
— Dominated by vertical dependencies

@ NOAA HPCC Final Report Page 13

June 2010

Using GPUs for High Performance Computing

Applications — Part Il
(the HPCC FY 2010 Proposal)

* Run NIM on Multiple GPUs oRY to S

communications

— Modifications to SMS libraries to
pack and unpack data to be
communicated via MPI

— Upgrades F2C-ACC compiler

* Data movement
e Distributed memory addressing
* Data persistence

e Evaluate Fortran GPU compilers
— Maintain codes in Fortran
* Not practical to translate into CUDA

v w NOAA HPCC Final Report

June 2010

Memory Addressing

C / CUDA require arrays start at 0
* Array references are collapsed using macros

a(i,j) becomes a[FTNREF2D(i,j,nx,1,1)]

Multiple GPUs addressing becomes complex
— a[FTNREF2D(i, j,nx/2,1lbound,ubound)], where

Lbound, ubound are calculated upper and lower bounds

* Conversion of loops, arrays to local address

Fortran Dynamic

Memory Addressing CUDA Addressing
1234 5 6 7 8 012 3 012 3
P1 P2 G1 G2

v @ NOAA HPCC Final Report

June 2010

Data Persistance

* Use cudaMalloc and cudaMemcpy to
allocate arrays on GPU during
initialization

float *d_ur;

cudaMalloc((void **) &d_ur, ((nz+l))*sizeof(float));

cudaMemcpy(d_ur,ur, (nz+l)*sizeof
(float),cudaMemcpyHostToDevice);

* Pass the pointer to the data thru the

kernel<< cuda grids,cuda threads >>>(d_ur, .>>>

* Use cudaMemcpy to copy data back to

the CPU

— Only copy halo when doing inter-process
communications

(N
argument list —
—

— Only copy entire array for model output

v w NOAA HPCC Final Report

June 2010

Conclusion

 GPUs are an attractive HPC platform for
scientific computing with tremendous
potential

— We demonstrated 34x performance boost

 Compilers need to mature to simplify
parallelization, conversion
— Users still need to analyze, convert their codes

e F2C-ACC will be used to support parallelization
— Rely on PGI, CAPS where possible

v@ NOAA HPCC Final Report

June 2010

